Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI’s first-generation frontier design, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion criteria to develop, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement discovering to improve reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key identifying function is its support knowing (RL) step, which was used to improve the model’s actions beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and goals, eventually boosting both relevance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it’s geared up to break down intricate queries and reason through them in a detailed manner. This guided thinking procedure allows the model to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually recorded the market’s attention as a flexible text-generation design that can be incorporated into numerous workflows such as agents, logical reasoning and information interpretation jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient inference by routing inquiries to the most appropriate expert “clusters.” This technique permits the design to specialize in different problem domains while maintaining general efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient designs to mimic the behavior and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and examine designs against essential safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you’re utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, develop a limitation increase request and reach out to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For guidelines, see Set up consents to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, prevent damaging content, yewiki.org and assess models against essential security requirements. You can implement security measures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to assess user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it’s sent out to the model for inference. After getting the design’s output, another guardrail check is used. If the output passes this final check, it’s returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
- Filter for DeepSeek as a provider and select the DeepSeek-R1 design.
The design detail page supplies essential details about the model’s abilities, rates structure, and application standards. You can discover detailed use guidelines, consisting of sample API calls and code bits for integration. The design supports different text generation jobs, consisting of content production, code generation, and concern answering, using its reinforcement learning optimization and CoT reasoning capabilities.
The page also includes release choices and licensing details to assist you get begun with DeepSeek-R1 in your applications.
- To start using DeepSeek-R1, select Deploy.
You will be triggered to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated.
- For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
- For Number of circumstances, enter a number of circumstances (between 1-100).
- For Instance type, choose your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and infrastructure settings, including virtual personal cloud (VPC) networking, service role approvals, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you may wish to review these settings to align with your organization’s security and compliance requirements.
- Choose Deploy to begin using the design.
When the implementation is total, you can test DeepSeek-R1’s abilities straight in the Amazon Bedrock play area.
- Choose Open in playground to access an interactive interface where you can explore different prompts and change design specifications like temperature and optimum length.
When utilizing R1 with Bedrock’s InvokeModel and Playground Console, use DeepSeek’s chat template for optimal outcomes. For instance, content for reasoning.
This is an outstanding way to check out the model’s thinking and text generation abilities before integrating it into your applications. The play ground supplies immediate feedback, helping you understand how the design reacts to different inputs and letting you tweak your prompts for optimal results.
You can rapidly test the design in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up inference parameters, and sends a request to generate text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two convenient approaches: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let’s explore both methods to assist you pick the method that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
- First-time users will be prompted to create a domain.
- On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model internet browser displays available designs, with details like the company name and design capabilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows crucial details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if applicable), showing that this model can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the design details page.
The model details page includes the following details:
- The model name and service provider details.
Deploy button to deploy the design.
About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description.
- License details.
- Technical specs.
- Usage standards
Before you deploy the model, it’s advised to evaluate the model details and license terms to validate compatibility with your use case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, use the immediately generated name or create a customized one.
- For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of instances (default: 1).
Selecting suitable instance types and counts is important for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this model, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the design.
The implementation process can take numerous minutes to complete.
When release is total, your endpoint status will alter to InService. At this point, the model is all set to accept reasoning demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can conjure up the model utilizing a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Clean up
To prevent unwanted charges, finish the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations.
- In the Managed deployments section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you’re erasing the right release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious solutions using AWS services and sped up compute. Currently, he is concentrated on developing methods for fine-tuning and optimizing the inference efficiency of big language models. In his spare time, Vivek takes pleasure in hiking, seeing movies, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor’s degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker’s artificial intelligence and generative AI center. She is enthusiastic about building options that assist customers accelerate their AI journey and unlock company worth.